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Motivation

Credit: CS188

Credit: HRL
Credit: KiwiBot

Credit: CS188

Credit: CS188
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Motivation

Courtesy: CS188

Safety is crucial in any engineering
system

driving safely on road without
colliding with any object/ vehicle.

Maintaining lane in autonomous
vehicles.

Basically, any and every form of
robot has some safety requirement
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Safety � Set invariance

Safety requirement can be cast as (in-)famous set-invariance

Consider a dynamical system

_x = f (x ) x (0) = �x

The safe set is defined by

C = fx : h(x ) � 0g

@C = fx : h(x ) = 0g

Then,

C is invariant () (rh(x ))>f (x ) � 0 8 x 2 @C
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Seeing is Believing

rh f (x )�

xe

h(x ) � 0

h(x ) < 0

� is acute
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Problem Setup

Consider a control affine nonlinear control system

_x = f (x ) +
mX

i=1

gi (x )ui x (0) = �x

Let’s characterize the safe set by

C = fx 2 Rn : h(x ) � 0g

GOAL
1 Ensure that the trajectory is safe (i.e. x (t) 2 C for t � 0)

2 The equilibrium, xe , is asymptotically stable (i.e. x (t) t!+1
����! xe)
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Guaranteed Stability

Consider the control system

_x = f (x ) +
mX

i=1

gi (x )ui x (0) = �x

Lyapunov function
A continuously differentiable function V : Rn ! [0;+1[ is called Control
Lyapunov Function if

c1kxk22 � V (x ) � c2kxk22
inf
u2U

�
Lf V + LgVu| {z }

_V

+V
�
� 0

where Lf V = (rf )>V ;LgV = (rg)>V
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Guaranteed Safety

For the control system

_x = f (x ) +
mX

i=1

gi (x )ui x (0) = �x

and the safe set C = fx : Rn : h(x ) � 0g

First safety certificate (Reciprocal Control Barrier Function)
A continuously differentiable function B : Rn ! R is RCBF if

1
�1(kxk@C)

� B(x ) �
1

�2(kxk@C)

inf
u

�
Lf B + LgBu| {z }

_B

�


B
�
� 0
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Second safety certificate

For the control system

_x = f (x ) +
mX

i=1

gi (x )ui x (0) = �x

and the safe set C = fx : Rn : h(x ) � 0g

Zeroing Control Barrier Function
A continuously differentiable function h : Rn ! R is ZCBF if

sup
u

�
Lf h + Lghu

�
� ��(h(x ))
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Safe & Stable(almost)

The safety and stability objective are combined to form a QP

Safe and Stable controller

min
u

u>u

subject to Lf V + LgVu + V � 0

Lf h + Lghu + �h � 0

Safe and (almost)Stable controller

min
u ;�

u>u + �2

subject to Lf V + LgVu + V � �

Lf h + Lghu + �h � 0
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Safe & Stable(almost)

Safe and (almost)Stable controller

min
U=(u ;�)

U>U

subject to AU + B � 0

where A =

 
LgV �1
�Lgh 0

!
;B =

 
Lf V + V
�Lf h � �h

!

JC, PK, CM (UC Berkeley) Safety Barriers April 26, 2022



1 Introduction
Motivation

2 Preliminaries
Setup
Control Lyapunov Functions
Control Barrier Functions
Combined safety and stability

3 Results
Problem description
Scenario Approach

Adaptive Cruise Control
Contrived Example

Probabilistic approach
Examples

4 Concluding remarks

JC, PK, CM (UC Berkeley) Safety Barriers April 26, 2022



(Updated) Setup

Consider a control affine nonlinear control system

_x = f (x ) +
mX

i=1

gi (x )ui x (0) = �x

Let’s characterize the safe set by

C = fx 2 Rn : h(x ) � 0g

GOAL
1 Ensure that the trajectory is safe (i.e. x (t) 2 C for t � 0)

2 The equilibrium, xe , is asymptotically stable (i.e. x (t) t!+1
����! xe)

3 System is robust to the perturbations in the control barrier function.
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Guaranteed safety against finite “scenarios”

We assume that the h 2 HF = fhig
q
i=1. We want the system to be robust

against all such scenarios

Immune to any perturbation

min
u ;�

u>u + �2

subject to Lf V + LgVu + V � �

inf
h2HF

�
Lf h + Lghu + �h

�
� 0 � Lf hi + Lghiu + �hi � 0 8 i
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Specialized setting

For cleaner expressions we work with linear control systems

_x = Ax|{z}
f (x )

+ B|{z}
g(x )

u

The values of different certificates are taken to be
1 V (x ) = x>Px ; where P � 0
2 h(x ) = a>x + b

Safe and stable controller for Linear Control System

min
u ;�

u>u + �2

subject to 2x>PAx + 2x>PBu + x>Px � �

a>Ax + a>Bu + �(a>x + b) � 0
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Parametrized perturbations to safe set

Under the previous setting, let’s assume that

a = �a + H � where k�k2 � �

The resulting optimization problem which is immune to this perturbation

Safety against ellipsiodal perturbations in safe set

min
u ;�

u>u + �2

subject to 2x>PAx + 2x>PBu + x>Px � �

�a>Ax + �a>Bu + �(�a>x + b)� �kH>Ax + H>Bu + �H>xk2 � 0

Thus, the problem reduced to solving for SOCP
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Adaptive Cruise Control
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Adaptive Cruise Control

Goal
1 Reach desired speed
2 Adjust vehicle speed to keep a safe distance from nearby vehicles.

Dynamics

m
dv
dt

= Fw � Fr

where

Fw : Wheel force (control input u)

Fr : Aerodynamic drag
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Adaptive Cruise Control

Dynamics
In linear control system form:

_x =

2
64xf

v
D

3
75 =

2
64 v
� 1

m Fr

v0 � v

3
75+

2
64 0
� 1

m
0

3
75u

where

xf - Position of the follower

v - Velocity of the follower

v0 - Velocity of the leader

D - Distance between the follower and leader

u - Force applied by the follower (Fw )

JC, PK, CM (UC Berkeley) Safety Barriers April 26, 2022



Adaptive Cruise Control

Stability Constraint
Use Lyapunov function V (y) = y2 with where y = v � vd . Applying this to

Lf V (x ) + LgV (x )u + V (x )� � � 0

yields

 0(v) = �
2(v � vd)

m
Fr + �(v � vd)

2

 1(v) =
2(v � vd)

m
 0(v) +  1(v)u � �
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Adaptive Cruise Control

Safety Constraint
Keep safe distance from leader: Heuristic Approach

h(x ) = D � cv � 0

Where c = 1:8. Applying to

Lf h(x ) + Lgh(x )u + �(h(x )) � 0

yields

�1:8
Fr

m
+ (v0 � v) +

1:8
m

u + h(x ) � 0

Perturbations
We consider perturbations in c i.e. c 2 f1:2; 1:8; 2:4g
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Adaptive Cruise Control

Quadratic Programming
Objective will be minimizing �2 of u = Fw = Fr + m�. Formulating QP in

terms of u =

"
u
�

#
with soft and hard constraints becomes:

min
u

uTHaccu + f T
accu

With safety and stability constraints.Where

Hacc =

"
1

m2 0
0 psc

#
; facc =

"
Fr
m2

0

#
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Simulation results
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v

Velocity

Original
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Figure: Velocity over time

Reaches Velocity vd quickly.
Reduces speed when safety contraint becomes active.
Robust case (perturbed constraints): reduce speed faster since it includes
more conservative safety constraint
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Simulation results
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Figure: Control values and the safety certificate
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Avoiding a circular set

Goal : Reach destination while avoiding obstacles.
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Avoiding a circular set

System Dynamics

_x = x + u ; x ;u 2 R2

Safety Constraint

h(x ) = �(jjx � cjj22 � r2
1 )(jjx � cjj22 � r2

2 )

Stability Constraint

V (x ) = xTx

Then we solve QP

min
u

uTu

with safety and stability constraints converted to linear inequality form.
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Avoiding a circular set

0 2 4

x

-3

-2

-1

0

1

2

3

y

Path

Figure: Trajectory with single obstacle
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Simulation results
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Perturbations in safety certificate
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Figure: Trajectory under multiple obstacles
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Perturbations in safety certificate

0 1 2 3

t

2

4

6

8

u

Norm of u

0 1 2 3

t

0

50

100

150

h

Barrier h

h
1

h
2

h
3

Figure: Control values and the safety certificate
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“Almost always” safe against perturbations
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“Almost always” safe against perturbations

x (t) 2 C 8t � 0

and safe-set C is defined as a super-level set of h(x ) : Rn ! R, i.e.,
C = fx 2 Rn j h(x ) � 0g

h is function of
system states x
un-safe regions, for instance, h � dist(x ; xobstacles)� � � 0

Goal
Prob(x 2 C) � �
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Stochasticity in Barrier Functions

Control barrier function gives us, x (t) 2 C, if

if 9u 2 U ; s.t. _h + �h � 0

Probabilistic barrier function formulation

min
u ;�

u>u + �2

subject to Lf V + LgVu + V � �

Prob
�
Lf h + Lghu + �h � 0

�
� � PrBF

PrBF depends on choice of h , nature of the probability distribution.
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Linear Barrier Function with Normal Distribution

Lets consider a linear barrier function,

h(x ) = a>x + b;

for the affine system, _x = f (x ) + g(x )u ; where a � N (�a ;�).

PrBF can be computed as,

Lf h + Lghu + �h = a>(f (x ) + g(x )u) + �(a>x + b)

= a> (f (x ) + �x + g(x )u)| {z }
=:�y

+ �b|{z}
=:~b

Prob(Lf h + Lghu + �h � 0) � Prob(a>y � ~b)
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Linear Barrier Function with Normal Distribution

Linear Inequalities with Normal Distribution

a>y � b; a � N (�a ;�)

=) a>y�b � N (�a>y�b; y>�y)

=) Prob(a>y � b) = �
� b��a>yp

y>�y

�
Prob(a>y � b) � � () b��a>y � ��1(�)k�1=2yk2

PrBF reformulation into SOCP

minu;� u>u + �2

s.t Lf V + LgVu + V � �

Prob
�
Lf h + Lghu + �h � 0

�
� �

9=
; =)

8<
:

minu;� u>uy + �2

s.t Lf V + LgVu + V � �
~b��a>y � ��1(�)k�1=2yk2

y - Objective function has to be rewritten in terms of y
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Example: Linear System with Chance Constraints

Dynamics: _x = Ax + Bu , with A = zeros(2; 2), B = eye(2).

Barrier function: h(x ) = a>x + b, with a � N
��
�1
0

�
;

�
0 0
0 0:1

��
; b = 4

xgoal =
h
5 0

i>

x1
goal

start

x2 h(x ) � 0

Lf h + Lghu + �h � 0 () a>(Ax +Bu) + �(a>x + b) � 0

Prob(Lf h + Lghu + �h � 0) � � () Prob(a>y � ~b) � �;

where y = �((A+ �I )x| {z }
y0

�Bu , ~b = �b

minu;� (y0 � y)>(y0 � y) + �2

s.t �2x>P(y)� � � �(2x>Py0 + 2x>PAx + x>Px )
~b��a>y � ��1(�)k�1=2yk2
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Linear System with Chance Constraints: Result 1
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Figure: Probabilistic Barrier Functions, with � = diag([�; �])

JC, PK, CM (UC Berkeley) Safety Barriers April 26, 2022



Linear System with Chance Constraints: Result 1

0 1 2 3 4 5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(a) �=0:5, �=0:1, Failed!

0 1 2 3 4 5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(b) �=0:75, �=0:1

0 1 2 3 4 5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(c) �=0:9, �=0:1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(d) �=0:75, �=0:5, Failed!

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(e) �=0:9, �=0:5Failed!

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(f) �=0:99, �=0:5

Figure: Probabilistic Barrier Functions, with � = diag([�; �])

JC, PK, CM (UC Berkeley) Safety Barriers April 26, 2022



Linear System with Chance Constraints: Result 2

Monte-Carlo simulations:

�=0:9, � = diag([0; 0:1])

N = 100 different simulations
(with different random seeds)

Each iteration simulated for
t=0:5s .

In each iteration, n = 200 random
values of a are generated (and
used during the simulation)

Results:

# of failures = 13

Empirical
Prob(a>y � ~b) = 0:87 � �
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Conclusion and Future Work

Conclusions
1 We presented some scenarios in which in uncertainty in the safe set can

be handled tractably.
2 Uncertainty in the system dynamics can also be captured via this analysis

Future work
1 Do away with the linearity assumption in the definition of safe set
2 Analyse higher relative degree systems that is the ones where Lgh = 0
3 Accounting for constraints in control inputs

JC, PK, CM (UC Berkeley) Safety Barriers April 26, 2022



Conclusion and Future Work

Conclusions
1 We presented some scenarios in which in uncertainty in the safe set can

be handled tractably.
2 Uncertainty in the system dynamics can also be captured via this analysis

Future work
1 Do away with the linearity assumption in the definition of safe set
2 Analyse higher relative degree systems that is the ones where Lgh = 0
3 Accounting for constraints in control inputs

JC, PK, CM (UC Berkeley) Safety Barriers April 26, 2022


	Introduction
	Motivation

	Preliminaries
	Setup
	Control Lyapunov Functions
	Control Barrier Functions
	Combined safety and stability

	Results
	Problem description
	Scenario Approach
	Probabilistic approach

	Concluding remarks

