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Abstract: Using quadrotors UAVs for cooperative payload transportation using cables has been
actively gaining interest in the recent years. Understanding the dynamics of these complex multi-
agent systems would help towards designing safe and reliable systems. In this work, we study
one such multi-agent system comprising of multiple quadrotors transporting a flexible hose.
We model the hose as a series of smaller discrete links and derive a generalized coordinate-free
dynamics for the same. We show that certain configurations of this under-actuated system are
differentially-flat. We linearize the dynamics using variation-based linearization and present a
linear time-varying LQR to track desired trajectories. Finally, we present numerical simulations
to validate the dynamics, flatness and control.
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1. INTRODUCTION

Aerial manipulation has been an active research area
for many years now, due to the simplicity of the dynamics
and control of multi-rotors. The ubiquity of these aerial ve-
hicles resulted in their use in a wide range of applications.
Few such applications include search and rescue [Bernard
et al. (2011)] and disaster management, for instance, using
UAVs to monitor forest fires [Merino et al. (2012)]. Payload
delivery using aerial vehicles [X-Wing (2019), PrimeAir
(2019), Palunko et al. (2012)] is another application that
has earned much attention in the last few years.

One extension of the payload carrying research is devel-
oping multi-rotor vehicles for active fire-fighting [Aerones
(2018)] using a tethered hose that carries water and power.
This enables carrying a fire hose to heights higher than
a typical fire-truck ladder as well as fly longer due to
the tethered power supply. Multi-rotors are also used to
help string power cables between poles [SkyScopes (2017)],
which typically is achieved using manned helicopters. To
achieve stable and safe control of these complex systems,
it is important to understand the underlying governing
principles and dynamics. In this work, we aim to model
and control the dynamics of a multiple quadrotor system
carrying a flexible cable/hose.

1.1 Related Work

There is a lot of literature on co-operative aerial ma-
nipulation, especially towards grasping and transporting
payloads using multiple quadrotors [Maza et al. (2009),
Mellinger et al. (2013), Jiang and Kumar (2012), Lee
and Kim (2017), Michael et al. (2011)]. Trajectory track-
ing control for point-mass/rigid-body payloads suspended
from multiple quadrotors is studied in [Lee et al. (2013),
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Fig. 1. Multiple quadrotors carrying a flexible hose (with
the hose modeled as a series of n discrete-links).
Links are massless with lumped mass at the ends and
indexed through S = {0, 1, ..., n}. The set I ⊆ S
gives the set of indices where the hose is attached
to a quadrotor. Each link is modeled as a unit-vector
qi ∈ S2. The configuration space of this system is
Q := R3 × (S2)n × (SO(3))nQ (nQ = |I|).

Goodarzi and Lee (2016), Sreenath and Kumar (2013),
Wu and Sreenath (2014)]. Similarly, for loads suspended
using flexible cables, stabilizing controllers are presented
in [Goodarzi et al. (2015), Goodarzi and Lee (2015)]
and these systems are shown to be differentially-flat in
[Kotaru et al. (2018)]. Tethered aerial vehicles have also
been extensively studied in the literature, for instance sta-
bilization of tethered quadrotor and nonlinear-observers
for the same are discussed in [Lupashin and D’Andrea
(2013), Nicotra et al. (2014), Tognon and Franchi (2015)].
Geometric control of a tethered quadrotor with a flexible
tether is presented in [Lee (2015)].



Most of the work discussed in the previous section
models the tethers/cables either as rigid-links or as a series
of links. Partial differential equations have also been used
to model a continuous mass system, such as the aerial
refueling cable shown in [Liu et al. (2017)]. However,
modeling the aerial cable as a finite-segment lumped
mass [Williams and Trivailo (2007), Ro and Kamman
(2010)] is quite common in the literature due to the finite
dimensionality of the state-space. However, most of these
works assume Euler angles in the local frame to represent
the attitude of the links. This results in complex equations
of motion for the system that are also prone to singularities
in case of aggressive motions. Therefore, in this work, we
make use of coordinate-free representation that results in
singularity-free and compact equations of motion.

1.2 Challenges

Multiple quadrotors carrying a flexible hose has mul-
tiple challenges in both modeling the dynamics and also
designing a controller. Even though modeling the hose as a
finite-segment lumped mass results in a finite-dimensional
state space, it would still result in a large number of states
depending on the choice of the number of discrete links.
In addition, developing a controller is challenging due to
the high under-actuation in the system. The swing of the
cable, when not accounted for in the control, can have an
adversarial effect.

1.3 Contributions

In this paper, we build upon the work done in the
literature to develop the dynamics and control of multiple
quadrotors carrying a flexible hose. This work is a step
towards developing a system, with multiple quadrotor
carrying a water-hose. However, for the purpose of this
paper and as a first step, we consider no water flow in the
hose. The contributions of this work are as follows,
• We derive a generalized coordinate-free dynamics for

multiple quadrotors carrying a flexible hose system.
These dynamics can be extended to a tethered mul-
tiple quadrotor system.
• We show that this system is differentially-flat for

certain configurations.
• We present variation-based linearized dynamics and

implement a time-varying LQR to track a time-
varying desired trajectory.
• Finally, we present numerical simulations to validate

the dynamics and control.
To the best of authors knowledge, this is novel configura-
tion of multiple quadrotors with a flexible hose and has
not been studied prior to this work.

1.4 Organization

Rest of the paper is organized as follows. Section 2
explains the system definition, notations and presents the
derivation of the dynamics. In Section 3 we show that the
system is differentially-flat. In section 4, we present a LQR
control on the variation-linearized dynamics. Section 5
presents numerical simulations validating the proposed
controller. Finally, some of the limitations in this paper
and potential directions to address them are discussed in
Section 6. Concluding remarks are in Section 7.

2. DYNAMICS

Consider a flexible hose connected to multiple quadro-
tor UAVs as shown in Figure 1. In this section, we present
the coordinate-free dynamics for this system. We consider
the following assumptions before proceeding to derive the
dynamics:
A1. No water/water-flow in the hose and thus also no

pressure forces;
A2. Hose is modeled as a series of n smaller links con-

nected by spherical joints;
A3. Each link is massless with lumped point-masses at the

end with the hose mechanical properties like stiffness
and torsional forces ignored.

A4. The quadrotors attach to the hose at their respective
center-of-masses.

In the following section, we present the notation used to
describe the system.

2.1 Notation

Dynamics for the model are defined using geometric-
representation of the states. Each link is a spherical-joint
and is represented using a unit-vector q ∈ S2 := {x ∈
R3 | ‖x‖ = 1}. The position of one end of the cable is
given in R3 and finally, the rotation matrix R ∈ SO(3) :=
{R ∈ R3×3|R>R = 1, det(R) = +1} is used to represent
the attitude of the quadrotor.

Let the hose be discretized into n links with the cable
joints indexed as S = {0, 1, . . . , n} as shown in Figure 1.
The position of one (starting) end of the hose is given
as x0 ∈ R3 in the world-frame. The position of the link
joints/point-masses is represented by xi ∈ R3, where the
link attitude between xi−1 and xi is given by qi ∈ S2 and
length of this link-segment is li i.e., xi = xi−1+liqi. Also,
mi is the mass of the lumped point-mass for link i. Let
the set I ⊆ S be the set of indices where the cable is
attached to the quadrotor and nQ = |I| is the number
of quadrotors. For the jth quadrotor, Rj ∈ SO(3) is the
attitude, mQj , Jj is its mass and inertia matrix (in body-
frame) and fj ∈ R,Mj ∈ R3 are the corresponding thrust
and moment for all j ∈ I. Finally, the configuration space
of this system is given as Q := R3 × (S2)n × (SO(3))nQ .
Table 1 lists the various symbols used in this paper.

2.2 Derivation

The kinematic relation between the different link posi-
tions is given using link attitudes as,

xi = x0 +

i∑
k=1

lkqk, ∀ i ∈ S\{0}, (1)

and the corresponding velocities and accelerations are
related as,

vi = v0 +
∑i
k=1 lkq̇k, ai = a0 +

∑i
k=1 lkq̈k. (2)

Potential energy U : TQ → R of the system, due to
hose and quadrotors’ mass is computed as shown below,

U =
∑
i∈S

mixi · ge3, (3)

where mi = mi + mQi1i is the net-mass at index i and

1i := 1I(i) =

{
1, if i ∈ I
0, else

is an indicator function for

the set I.



Equations of motion for multiple quadrotors carrying a flexible hose

ẋ0 = v0, q̇i = ωi × qi, (4)



M00I3 −q×1 M01 −q×2 M02 . . . −q×nM0n

−M10q
×
1 −M11I3 M12q

×
1 q
×
2 . . . M1nq

×
1 q
×
n

−M20q
×
2 M21q

×
2 q
×
1 −M22I3 . . . M2nq

×
2 q
×
n

...
...

...
. . .

...

−Mn0q
×
n Mn1q

×
n q
×
1 Mn2q

×
n q
×
2 . . . −MnnI3


︸ ︷︷ ︸

=:M{qi}


v̇0

ω̇1

ω̇2

...
ω̇n

 =



n∑
i=1

M0i‖ωi‖2qi +
∑n
k=0 uk

−
n∑
k=1

(M1k‖ωk‖2q×1 qk)−l1q×1
n∑
k=1

uk

−
n∑
k=1

(M2k‖ωk‖2q×2 qk)−l2q×2
n∑
k=2

uk

...

−
n∑
k=1

(Mnk‖ωk‖2q×n qk)−lnq×n un


, (5)

Ṙj = RjΩ
×
j , JjΩ̇j = Mj − Ωj × JiΩj , (6)

∀i ∈ S\{0}, j ∈ I, ui = (−mige3 + fiRie31i).

Kinetic energy T : TQ→ R is similarly given as,

T =
∑
i∈S

1

2
mi〈vi, vi〉+

∑
j∈I

1

2
〈Ωj , JjΩj〉, (7)

where Ωj is the angular velocity of the quadrotor j in its
body-frame. Dynamics of the system are derived using the
Lagrangian method, where Lagrangian L : TQ → R, is
given as,

L = T − U .

We derive the equations of motion using the Langrange-
d’Alembert principle of least action, given below,

δ

∫ tf

t0

Ldt+

∫ tf

t0

δWedt = 0, (8)

where δWe is the infinitesimal work done by the external
forces. δWe can be computed as,

δWe =
∑
j∈I

(
〈W1,j , M̂j〉+ 〈W2,j , fjRje3〉

)
, (9)

W1,j = RTj δRj , (10)

W2,j = δxj = δx0 +
∑j
k=1 lkδqk, (11)

are variational vector fields [Goodarzi et al. (2015)] cor-
responding to quadrotor attitudes and positions. The in-
finitesimal variations on q and R are expressed as,

δq = ξ×q = −q×ξ, ξ ∈ R3 s.t. ξ · q = 0,

δq̇ = −q×ξ̇−q̇×ξ,
δR = Rη×, δΩ× = (Ω×η)

×
+η̇×, η ∈ R3,

with the constraints q · q̇ = 0 and q ·ω = 0, ω is the angular
velocity of q, s.t. q̇ = ω × q. The cross-map is defined as
(·)× : R3 → so(3) s.t x×y = x × y,∀x, y ∈ R3. Similarly,
variations on the link positions are given as,

δxi = δx0 +

i∑
k=1

lkδqk = δx0−
i∑

k=1

lkq
×
k ξk, (12)

δvi = δv0+

i∑
k=1

lkδq̇k = δv0−
i∑

k=1

lk(q×k ξ̇k+q̇×k ξk). (13)

Finally, we obtain the equations of motion for the system
by solving (8). See Appendix A for the detailed derivation.
Equations of motion for the multiple quadrotors carrying
a flexible hose are given in (4)-(6). Note the mass-matrix
M{qi} is a function of link attitudes {qi} = {q1, q2, . . . qn}

and we use the following notation similar to [Goodarzi
et al. (2014)]

M00=
∑n
k=0mk,M0i=li

∑n
k=imk,

Mi0=M0i,Mij =
∑n
k=max{ij}mklilj . (14)

Remark: 1. In (5), note the use of fi, Ri for i /∈ I, (since
i /∈ I implies no quadrotor is attached at index i and thus
cannot have fi and Ri). However, this notation is used for
convenience, since i/∈I =⇒ 1i=0 and thus fiRie31i = 0,
there by ensuring the right inputs to the system.

Remark: 2. Degrees of freedom for the multiple quadrotors
carrying a flexible hose is DOF = 3(nQ+1)+2n where 2n
corresponds to the link attitudes DOF, 3nQ the rotational
DOF of the quadrotors and 3 for the initial position
x0. Similarly, the degrees of actuation is DOA = 4nQ
corresponding to the 4 inputs for each quadrotor. Thus,
the degrees of under-actuation are DOuA = 2n+ 3− nQ.
For a typical setup we have n >> nQ, i.e., system is highly
under-actuated.

Remark: 3. For a tethered system, we can assume x0≡0
∀ t, i.e. the system is tethered to origin of the inertial
frame, and we can derive the dynamics as earlier. Equa-
tions of motion for this system would be same as (4)-(6),
without the equation corresponding to v̇0.

3. DIFFERENTIAL FLATNESS

In the previous section, we derived the dynamics for
multiple quadrotors carrying a flexible hose. The system
is under-actuated and thus the control of the system is
challenging. In this section, we show that the system is
differentially-flat. A nonlinear system is differentially-flat
if a set of outputs of the system (equal to the number of
inputs) and their derivatives can be used to determine the
states and inputs without integration.

Definition: 1. Differentially-Flat System, [Murray et al.
(1995)]: A system ẋ = f(x,u), x ∈ Rn, u ∈ Rm, is
differentially flat if there exists flat outputs y ∈ Rm of
the form y = y(x,u, u̇, . . . ,u(p)) such that the states and
the inputs can be expressed as x = x(y, ẏ, . . . ,y(q)), u =
u(y, ẏ, . . . ,y(q)), where p, q are positive finite integers.
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set of quadrotor indices
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Fig. 2. Configuration of the multiple quadrotors carrying a flexible hose illustrating the differential-flatness and its
flat-outputs (shown in red).

Table 1. List of various symbols used in this
work. Note: k∈S, i∈S\{0}, j∈I, WF - World
frame, BF-Body-frame, | · | represents cardi-

nality of a set.

Variables Definition

n ∈ R+ Number of links in the hose.
S = {0, 1, . . . , n} Set containing indices of the

hose-segments.
xk ∈ R3 Position of the kth point-mass

of the hose in WF.
vk ∈ R3 Velocity of the kth point-mass

of the hose in WF.
li ∈ R+ Length of the ith segment.
mk ∈ R+ Mass of the kth point-mass in

the hose-segments.
qi ∈ S2 Orientation of the ith hose seg-

ment in WF.
ωi ∈ TqiS2 Angular velocity of the ith hose

segment in WF.

I ⊂ S Set of indices where the hose is
attached to the quadrotor.

|I| = nQ Number of quadrotors.
xQj ≡ xj Center-of-mass position of the

jth quadrotor in WF.
Rj ∈ SO(3) Attitude of the jth quadrotor

w.r.t. WF.
Ωj ∈ TRj

SO(3) Angular velocity of the jth

quadrotor in BF.
mQj , Jj Mass & inertia of the jth

quadrotor.
fj ∈ R, Mj ∈ R3 Thrust and moment of the jth

quadrotor in BF.

1i := 1I(i) =

{
1 if i ∈ I
0 else

Indicator function for the set I.

mk = mk +mQk1k Net mass at the kth link joint.
uk = (−mkge3 + fkRke31k) Net force due to thrusters &

gravity.

A quadrotor is a differentially-flat system with the quadro-
tor center-of-mass and yaw as the flat outputs [Mellinger
and Kumar (2011)]. A quadrotor with cable suspended
load (with the cable modeled as a massless link) is also
shown to be differentially-flat with load position and
quadrotor yaw as the flat outputs [Sreenath et al. (2013)].
Similarly, a quadrotor with flexible cable suspended load,
with the cable modeled as series of smaller links is shown
to be differentially-flat [Kotaru et al. (2018)]. Again, here

x

Fig. 3. Tethered multiple quadrotors carrying a flexible
hose.

load position and quadrotor yaw are the flat-outputs. For
the system defined in this work, the quadorotor-flexible ca-
ble segments are connected in series. Unlike previous work
where each quadrotor has only one segment connected
to it, each quadrotor in this system can have 0, 1, or 2
segments connected to it. In the following, we formalize
the differential-flatness for certain configurations of the
multiple quadrotors carrying a flexible hose system.

Lemma 1. Y = (x0, ψj , Tk+1) ∀j∈I & k∈I\{n} are the set
of flat-outputs for multiple quadrotors carrying a flexible
hose with n∈I (i.e., end of the cable is always attached
to a quadrotor as shown in Figure 2), where x0∈R3 is the
position of the start of the cable, ψj∈R is the yaw angle
of the jth quadrotor and Tk+1 ∈ R3 is the tension vector
in the (k+1)th link (as shown in Figure 2).

Proof. See Appendix B

Remark: 4. To determine the states and inputs of the
system with n− links, requires (2n+4) derivatives of the
flat-output x0, 2nd derivative of the yaw angle ψj and
2(n−k)+2 derivatives of the tension vector Tk+1.

Corollary 2. Y = (T1, ψj , Tk+1) ∀j∈I & k∈I\{n} are the
flat-outputs for a tethered multiple quadrotors carrying a
flexible hose shown in Figure 3, where T1 ∈ R3 is the
tension in the 1st link, ψj ∈ R is the yaw angle of the
quadrotor at index j and Tk+1 ∈ R3 is the tension vector
in the (k+1)th link.

Proof. See Appendix B

Differential-flatness is used in planning the system
trajectories, where the flat outputs are used to plan in
the lower-dimension space and the corresponding desired
states and inputs are computed using differential flatness.



In the next section, we present the linearized dynamics
about any desired time-varying trajectory and use an LQR
to track desired trajectories.

4. CONTROL

Having presented differential-flatness in the previous
section, we proceed to present control to track desired-
trajectories generated using the flat-outputs in this sec-
tion. As presented in the Remark 2, the given system
is highly underactuated and thus controlling the sys-
tem is challenging. In this section, we present a way
to control the system by linearizing the dynamics in
(4)-(6) about a given desired time-varying trajectory 1

(x0d(t), v0d(t), qid(t), ωid(t), Rjd(t),Ωjd(t)), ∀i ∈ S, j ∈ I
and then implementing a linear controller.

4.1 Variation Based Linearization

In this sub-section, we present the coordinate-free lin-
ear dynamics, obtained through variation based lineariza-
tion of the nonlinear dynamics in (4)-(6). We use the
variation linearization techniques described in [Wu and
Sreenath (2015)] to obtain the linear dynamics. The error
state of the linear-dynamics is given as,

δx = [δx, ξ1, . . . , ξn, δv, δω1, . . . , δωn,

ηj1 , . . . , ηjnQ
, δΩj1 , . . . , δΩjnQ

]>, (15)

and the corresponding inputs as,
δu = [δfj1 , δfj2 , . . . , δfjnQ

, δM>j1 , δM
>
j2 , .., δM

>
jnQ

]>, (16)

where j1, j2, . . . , jnQ
are elements of I arranged in increas-

ing order. The individual elements of the error state are
computed as,

δx = x−xd, δv = v−vd,
ξi = q×idqi, δωi = ωi − (−(q×i )2)ωid,

ηj =
1

2
(RTjdRj −RTj Rjd)

∨
, δΩj = Ωj −RTj RjdΩjd.

Finally, the linearized dynamics (See Appendix C for
detailed derivation of the linearized dynamics) about a
time-varying desired trajectory are given below,

δẋ = Aδx + Bδu, (17)

Cδx = 0. (18)
The linear dynamics matrices A,B are,

A=


03,3 03,3n I3,3 03,3n 03,3nQ

03,3nQ

03n,3 α 03,3 β 03,3nQ
03,3nQ

M−1
{qid}

F

03nQ,3 03nQ,3n 03nQ,3 03nQ,3n γ I3nQ,3nQ

03nQ,3 03nQ,3n 03nQ,3 03nQ,3n 03nQ,3nQ
ν

 , (19)

with,

F =

[
O3,3 [a]i O3,3 [b]i [e]j O3nQ,3nQ

O3n,3 [c]i,j O3n,3 [d]i,j [f ]i,j O3nQ,3nQ

]
,

α = bdiag[q1dq
>
1dω
×
1d, q2dq

>
2dω
×
2d, . . . , qndq

>
ndω

×
nd],

β = bdiag[
(
I3−q1dq>1d

)
,
(
I3−q2dq>2d

)
, . . . ,

(
I3−qndq

>
nd

)
],

γ = bdiag[−Ω
×
j1d, − Ω

×
j2d, . . . ,−Ω

×
jnQd],

ν = bdiag[J
−1
1 ((J1Ω1d)

×−Ω
×
1dJ1), . . . , J

−1
n ((JnΩnd)

×−Ω
×
ndJn)],

and

B =


O3(n+1),4nQ

M−1
{qid}

G

O3nQ,4nQ[
O3nQ,nQ

µ
]
 , with µ = bdiag[J

−1
j1 , . . . , J

−1
jnQ

], (20)

G =

[
[g]i

[h]i,j

∣∣∣ O(3(n+1),3nQ)

]
.

1 States & inputs of the desired trajectories are represented with a
subscript-d

Next, the constraint matrix C is defined as,

C=
[
On,3 C1 On,3 On,3n On,6nQ

On,3 C2 On,3 C1 On,6nQ

]
, (21)

with

C1 = bdiag(q
T
1d, q

T
2d, . . . , q

T
nd), C2 = bdiag(−ωT

1dq
×
1d, . . . ,−ω

T
ndq
×
nd).

The rest of the elements are described below,
ai = M0i

[
(ω̇
×
id − ‖ωid‖2I3)q

×
id,

bi = M0i(2qidω
>
id), i = {1, . . . , n},

cij =


[
Miov̇

×
0d
−
∑n

j=1,j 6=i
Mij

(
(q×

jd
)ω̇jd)

×
+

‖ωjd‖2q×jd
)
− li
(∑n

k=i
u×
k

)]
(−q×

i
), i = j[

Mijq
×
id

(
ω̇×

jd
− ‖ωjd‖2I

)
q×
jd

]
, i 6= j

dij =

{
O3,3, i = j

Mij

[
2q×

id
qjdω

>
jd

]
, i 6= j

ej = −fjdRjde
×
3 , j ∈ I

fij =

{
φ, if j /∈ I
−(liq

×
i

)fjdRjde3
×, if j ∈ I, j ≥ i

O3,3, if j ∈ I, j < i

gj = Rjde3,

hij =

{
φ, if j /∈ I
(liq
×
i

)Rjde3, if j ∈ I, j ≥ i
O3,1, if j ∈ I, j < i

and bdiag is block diagonal matrix. Note that M{qid} in
(19), (20) is the same mass matrix in (5), except is the
function of desired link attitudes {qid}.

As seen, (17)-(18) is a time-varying constrained linear
system. The constraints arise due to the variation con-
straint on S2 as discussed in [Wu and Sreenath (2015)].
Controllability of the constrained linear equation can be
shown similar to [Wu and Sreenath (2015)], however, due
the complexity of the matrices A,B, C computing the con-
trollability matrix would be intractable.

4.2 Finite-Horizon LQR

Assuming, we have the complete reference trajectory
we can implement any linear control technique for (17)-
(18). Similar to [(Wu and Sreenath, 2015, Lemma 1)], we
can show that the constraint (18) is time-invariant, i.e.,
if the initial condition satisfies the constraint, solution to
the linear system would satisfy the constraint for all time.
However, due to this constraint, the controllability matrix
computed using A,B might not be full-rank and requires
state transformation into the unconstrained space to result
in full-rank controllability matrix.

Instead, we opt for a finite-horizon LQR controller
for the variation-linearized dynamics about a time-varying
desired trajectory. We chose a finite-time horizon T , the
terminal cost matrix PT and pick cost matrices for states
Q1 = QT1 and inputs Q2 = QT2 . Finally, we solve the
continuous-time Ricatti equation backwards in time to
obtain the gain matrix P (t), that satisfies,

−Ṗ = Q1 − PBQ−1
2 BTP +ATP + PA. (22)

The above equation is solved offline and stored in a
table for online computation. Note that the explicit time
dependence of P,A,B is dropped for convenience. Finally,
the feedback gain for the control input is computed as,

K = R−1BP, δu = −Kδx. (23)
Since the gains are computed backwards in time, the
computed input would result in a stable control for the
constrained linear-system. The net control-input to the
nonlinear system can be compute as,

u(t) = ud(t) + δu. (24)



In the next section, we present few numerical simulations
with the finite-horizon LQR performing tracking control
on the full nonlinear-dynamics.

5. NUMERICAL SIMULATIONS

In this section, we present numerical results to validate
the dynamics and control discussed in the earlier sections.
We present numerical simulations for tracking control for
a desired setpoint and circular trajectory. 2

5.1 Setpoint Tracking

(i). Two Quadrotor system: Following parameters are
considered for the simulations,
n = 10, nQ = 2, I = {0, 10}, mi = 0.0909kg, li = 0.1m,

mQj = 0.85kg, Jj = diag([.0557, .0557, 0.1050])kgm2

and the setpoint is given as,
x0d = [0, 0, 0]T , xnd = [0.6, 0.0, 0.0]T ,

with the cable hanging between these two points. De-
grees of freedom and under-actuation for this setup are
#DOF = 29, #DOuA = 21 respectively. The linear dy-
namics A,B, C are computed about this setpoint xd. Here,
we compare two different controllers, (i) the finite-horizon
LQR discussed in the previous-section and (ii) position-
controllers on the two quadrotors with feed-forward forces
due to the cable at steady state. We start with some initial
error in the cable orientation and the resulting error plots
are shown in Figure 4. As seen in the Figure, errors for
cable position x0, cable attitudes and quadrotors’ attitude
converge to origin. Attitude errors for the hose links is
defined as the configuration error on S2,

Ψq = 1− qTidqi, (25)
and similar quadrotor attitude error is defined as,

ΨR = 0.5Tr(I −RTjdRj). (26)
For the position control with feed-forward forces, even
though the quadrotor attitudes are zero, the initial error in
cable orientation results in oscillations in the cable. These
oscillations are not accounted for in the control and can
be seen in Figure 4.

(ii). Three Quadrotor system: Setpoint tracking for
cable suspended from three-quadrotors is presented here.
Parameters for the system are as follows,
n = 10, nQ = 3, I = {0, 5, 10}, mi = 0.0909kg, li = 0.2m,
and #DOF = 32,#DOuA = 20. Various tracking errors
for the system are presented in Figure 5 and snapshots for
the system are shown in Figure 6.

5.2 Trajectory Tracking

In this section, we show that the presented controller
tracks a desired time-varying trajectory with initial errors.
We use the following system parameters,
n = 5, nQ = 2, I = {0, 5}, mi = 0.1667kg, li = 0.2m

and the rest same as those given in Section 5.1. We
consider the following flat output trajectory,

x0 =

[
ax(1− cos(2f1πt))
ay sin(2f2πt)
az cos(2f3πt)

]
, T̄1 =

[
2.74
0.0
−3.27

]
, ψ0 ≡ ψ5 ≡ 0,

f1 =
1

4
, f2 =

1

5
, f3 =

1

7
, ax = 2, ay = 2.5, az = 1.5.

Rest of the states and inputs can be computed using
differential-flatness.We use the linearized-dynamics and
2 MATLAB code for the simulations can be found at https://

github.com/HybridRobotics/multiple-quadrotor-flexible-hose.
Video for simulations is at https://youtu.be/i3egJ4fcAKM.
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Fig. 4. List of errors comparing the LQR control on the
whole system (lqr) and feed-forward control on the
quadrotor-position (ff). Ψq is the hose link attitude
errors as defined in (25) and ΨR is the quadrotor
attitude configuration error defined in (26).
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Fig. 5. Tracking errors for desired set-point for nQ = 3
with the LQR control. Ψq,ΨR are as defined in (25)-
(26).

the finite-horizon LQR presented in the previous sections
to achieve the tracking control. Following weights are used
for the LQR,
Qx = 0.5I6, Qq = 0.75I6n, QR = I3nQ

, QΩ = 0.75I3nQ
,

Q = bdiag(Qx, Qq, QR, QΩ),

R = 0.2I4nQ
, PT = 0.01Inx

,
where nx = 6+6n+6nQ. Figure 7 shows snapshots of
the system at different instants along the trajectory. The
proposed controller tracks the desired trajectory (shown
in red) when started with an initial error.

6. RESULTS AND DISCUSSION

Having presented numerical results to validate our
controller, we now present some discussion on limitations
and future work.

Limitations

Though increasing discretization helps better repre-
sent the dynamics of an hose system, it also increases
the computation-complexity. To better study the effect of
discretization we ran multiple simulations with different
discretizations for a fixed cable length and mass. We used
only control on the quadrotor-positions with feed-forward



Fig. 6. Snapshots of 3 quadrotor-10 link system while tracking a setpoint. Setpoints for the quadrotor position is shown
by the red-hexagrams.

Fig. 7. Snapshots of the multiple quadrotors carrying
a flexible hose system while tracking the desired
trajectory (shown in red) and the resulting trajectory
when started with an initial error(shown in black).
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Fig. 8. Errors for the trajectory tracking control shown in
Fig. 7. Ψq,ΨR are as defined in (25)-(26).
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Fig. 9. Computation time to simulate 10s for different
discretizations n.

cable tensions. We used MATLAB 2018a with Intel Core
i7−6850K cpu@3.60GHz × 12 to run the simulations.
Computation times to simulate 10s for different n are
shown in Figure 9. As illustrated in the Figure, compu-
tation time increases super-linearly with n.

While differential-flatness can be used to plan trajec-
tories in the flat-output space and compute desired states
and inputs, this computation requires computing qi and
its derivatives from tension Ti and its derivatives, i.e.
qi = Ti

‖Ti‖ . The complexity of this computation increases

for higher-derivatives.
In addition, as listed in the Section 2, we don’t consider

the mechanical properties of the hose when deriving the
dynamics. Thus, the dynamics derived and the subsequent
presented control might not completely capture the system
fully and might lead to instability in cases when hose
properties are important, such as when water flows in the
hose.

Future Work

As part of future work, we would like to address some
of the limitations listed in the previous sections, such as,
(i) number of discretizations, (ii) number of derivatives to
computed, and (iii) water flow in the hose. We would like
to study the current system along with all the mechanical
properties of the cable and develop controllers for such
systems. In addition, to implement the control we require
state estimation of the cable which as shown is modeled
as (S2)n. Towards this end we hypothesize [Kotaru and
Sreenath (2019)] can be extended to estimate the cable
state. A possible method to improve the computation time
would be to use limited cable states like mid-position of
the cable etc., to develop a controller.

7. CONCLUSION

In this work we have studied the multiple quadrotors
carrying a flexible hose system. We modeled the flexible-
hose as a series of smaller discrete-links with lumped
mass and derived the coordinate-free dynamics using
Langrange-d’Alembert’s principle. We also showed that
the given system is differentially-flat, as long as the end
of the hose is connected to a quadrotor. Variation-based
linearized dynamics were derived about time-varying de-
sired trajectory. We showed tracking control for the system
using finite-horizon LQR for the linear dynamics and val-
idated this through numerical simulations with up-to 10
discretizations of the hose. Finally, we discussed some of
the limitations due to the assumptions and directions for
future work.
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Appendix A. DYNAMICS DERIVATION

In this section, we present the detailed derivation of the
equations of motion, (4)-(6), for the given system. Starting
with the principle of least action in (8) and substituting
for Lagrangian and virtual work from (3),(7) and (9), we
have,

δ

∫ (∑
i∈S

1

2
mi〈vi, vi〉 −mige3 · xi +

∑
j∈I

1

2
〈Ωj , JjΩj〉︸ ︷︷ ︸
rot.energy

)
∫ (∑

j∈I
〈W1j , M̂j〉︸ ︷︷ ︸
rot.work

+〈W2j , fjRje3〉
)
dt. (A.1)

Separating and solving the rotational components, we have
the following rotational dynamics

JjΩ̇j = M − Ωj × JjΩj , ∀ j ∈ I (A.2)
Taking variation on rest of the equation results in,∫ ∑

i∈S

[
mi〈δvi, vi〉+ δxi · (−mige3 + fiRie31i)︸ ︷︷ ︸

ui

]
dt = 0.

Expanding the summation,∫ 
m0〈δv0, v0〉+ δx0 · u0+
m1〈δv1, v1〉+ δx1 · u1+

...
mn〈δvn, vn〉+ δxn · un

 dt = 0

Replacing the variations δvi, δxi with their expansions
(12), (13), we get,∫ 

(
m0〈δv0, v0〉+ δx0 · u0

)
+(

m1〈δv0−l1(q×1 ξ̇1 + q̇1
×ξ1), v1〉

+(δx0−l1q1×ξ1) · u1
)
+

.

..(
mn〈δv0−

∑n

k=1
lk(q×

k
ξ̇k + q̇k

×ξk), vn〉
+(δx0−

∑n

k=1
lkqk

×ξk) · un
)


dt = 0 (A.3)

Using the following simplifications in (A.3),

〈−lk(q×k ξ̇k + q̇k
×ξk), v〉 = lk(qk

×v) · ξ̇k + lk(q̇×k v) · ξk,
−lk(qk

×ξk) · u = lk(qk
×u) · ξk,

and regrouping the respective variations would result in,∫ 

δv0 ·
∑n

k=0
mkvk + δx0 ·

∑n

k=0
uk+[

ξ̇1 ·
(
l1q1×

∑n

k=1
mkvk

)
+

ξ1 ·
(
l1q̇
×
1

n∑
k=1

mkvk+l1q1
×

n∑
k=1

uk
)]

+

...[
ξ̇n · (mnln(qn×vn))+

ξn · (mnln(q̇×n v) + ln(qn×un))

]


dt=0. (A.4)

Integration by parts on the respective variation sets
results in∫ 

−δx0 · (m0v̇0 +m1v̇1 + . . .mnv̇n)+

δx0 ·
(∑n

k=0
uk
)
+

−ξ1·
(
(((

((((l1q̇
×
1

∑n

k=1
mkvk+l1q1×

n∑
k=1

mk v̇k

)
+ξ1·

(
��

�
��
�

l1q̇
×
1

n∑
k=1

mkvk+l1q
×
1

∑n

k=1
uk

)
...

−ξn ·
(
lnqn×mnv̇n

)
+ ξn ·

(
lnqn×un

)


dt=0,

(A.5)

and finally,∫ 
δx0 ·

(∑n

k=0
−mk v̇k + uk

)
+

ξ1·l1q1×
(∑n

k=1
−mk v̇k + uk

)
...

ξn ·
(
− lnqn×mnv̇n + lnqn×un

)

 dt=0. (A.6)

By principle of least action the above integral is valid
∀δx0, ξi, t and thus, to ensure the above equation to be
zero for all time we have,(
− (m0v̇0 +m1v̇1 + . . .mnv̇n) +

∑n
k=0 uk

)
= 0

q1×,
(
− l1q×1

∑n
k=1mkv̇k + l1q

×
1

∑n
k=1 uk

)
= 0,

...

qn ×
(
− lnqn×mnv̇n + lnqn

×un

)
= 0.

(A.7)

Expanding the v̇i we have,

(m0v̇0 +m1(v̇0 +

1∑
k=1

lk q̈k) + . . .+mn(v̇0 +

n∑
k=1

lk q̈k)) =

n∑
k=0

uk,

l1(q×1 )2
(
m1(v̇0 +

1∑
k=1

lk q̈k) + . . .mn(v̇0 +

n∑
k=1

lk q̈k)
)
=l1(q×1 )2

n∑
k=1

uk,

...

ln(q×n )2
(
mn(v̇0 +

n∑
k=1

lk q̈k)
)

= ln(q×n )2
n∑

k=n

uk.

Simplifying the above equations using (14) and the
following relations,

q̇ = ω×q,
q̈ = ω̇×q + ω×q̇ = ω̇×q − ‖ω‖2q

(q×)2q̈ = q×(q×q̈) = (q · q̈)q − (q · q)q̈ = −(q̇ · q̇)q − q̈,
would result in (5).

Appendix B. DIFFERENTIAL FLATNESS

In this section, we present the proof for differential-
flatness stated in Lemma 1

Proof. Illustration of the differential-flatness is shown in
Figure 2. For the purpose of proving differential-flatness
we redefine the dynamics of the system using tensions in
the cable links as given below,

m0ẍ0 = T1 −m0ge3, (B.1)

maẍa = Ta+1 − Ta −mage3, (B.2)

mbẍb = Tb+1 − Tb −mage3 + fbRbe3, (B.3)

mbẍn = −Tn −mnge3 + fnRne3, (B.4)
where ∀a ∈ S\{0, I} i.e., all the points excluding the
starting point of the cable and those connected to the
quadrotors and ∀b ∈ I\{n} and the quadrotor attitude
dynamics are as given in (6). Also note n∈I, i.e., end
the cable is attached to the quadrotor. Number of inputs
in the system are 4nQ corresponding to the thrust and
moment of the quadrotors. Number of flat outputs are 3
(for position x0) + 3(nQ−1) (3 for each tension Tk+1∀k ∈
I\{n}) and nQ( for each quadrotor yaw ψj) = 4nQ.

Making use of the these dynamics we prove the flatness
as follows.



(i) Given, x0 is a flat-output and therefore we have the
cable start position and its derivatives as shown,

{x0, ẋ0, ẍ0, x
(3)
0 , . . . , x

(2n+4)
0 }. (B.5)

(ii) Taking derivatives of (B.1) and making use of (B.5)
we have tension vector T1 in the first link and its
derivatives,

{T1, Ṫ1, T̈1, T
(3)
1 . . . , T

(2n+2)
1 }. (B.6)

(iii) Attitude of the first link is then determined from the
tension vector in (B.6) as

q1 = T1/‖T1‖ (B.7)
and its higher derivatives,

{q̇1, . . . , q
(2n+2)
1 }, (B.8)

are computed by taking derivatives of (B.7) and using
(B.6).

(iv) Position and its derivatives of the next link point-
mass m1 is computed using (1),

{x1, ẋ1, ẍ1, . . . , x
(2n+2)
1 }. (B.9)

(v) Repeating the steps (ii)-(iv), we can compute the link
attitudes, tensions and the positions iteratively till xb.

(vi) Using (B.3) and the fact that Tb+1 is a flat-output
(note b ∈ I\{n}) we can compute the thrust in the
quadrotor fbRbe3.

(vii) From xb, fbRbe3 and their derivatives, the quadrotor
attitude, angular velocity Rj ,Ωj and moment Mj

can be computed as shown in [Mellinger and Kumar
(2011)].

(viii) Rest of the states and inputs for the multiple quadro-
tors carrying a flexible hose segments can be itera-
tively determined as described above.

Proof for Corollary 2 is given below,

Proof. For tethered system we have x0 ≡ 0 and T1 is
known since it-is a flat-output, i.e., steps (i)-(ii) (see (B.5)-
(B.6)). Rest of the proof follows form Lemma 1.

Appendix C. VARIATION-BASED LINEARIZED
DYNAMICS

Taking variations with respect to desired states for
various states is as follows,

δqi = ξ×i qid = −q×idξi (C.1)

δ(‖ωi‖2) = δ(ω>i ωi) = 2ω>id(δωi) (C.2)

δRj = Rjdη
×
j (C.3)

Taking variation on the first row of (5),

δ

(
M00I3v̇0 −

n∑
i=1

M0iq
×
i ω̇i =

n∑
i=1

M0i‖ωi‖2qi +

n∑
k=0

uk

)
(C.4)

M00I3δv̇0 −
n∑

i=1

M0iq
×
id
δω̇i =

n∑
i=1

(
M0i

[
(ω̇×

id
− ‖ωid‖2I3)q×

id

]
ξi +M0i(2qidω

>
id)δωi

)
+

n∑
k=0

(
(δfk)Rkde31k + fkdδRkde31k

)
(C.5)

taking variation on rest of the equations,

δ

(
Mi0q

×
i v̇0 +MiiI3ω̇i −

n∑
j=1,j 6=i

Mijq
×
i q
×
j ω̇j =

n∑
k=1

(Mik‖ωk‖2q×i qk) + li(q
×
i )

n∑
k=i

uk

)
(C.6)

Mi0

(
δ(q×i )v̇0d + q×

id
δv̇0
)

+MiiI3δω̇i

−
n∑

j=1,j 6=i

Mij

[
δ(q×i )q×

jd
ω̇jd + q×

id
δ(q×j )ω̇jd + q×

id
q×
jd
δω̇j

]
=

n∑
k=1

(Mik

[
2q×

id
qkdω

>
kdδωk + ‖ωkd‖2δ(q×i )qkd+

‖ωk‖2q×i δqkd
]
) + liδ(q

×
i )

n∑
k=i

uk + li(q
×
i )

n∑
k=i

δuk (C.7)

Mi0q
×
id
δv̇0 +MiiI3δω̇i −

n∑
j=1,j 6=i

Mij

[
q×
id
q×
jd
δω̇j

]
=

[
Miov̇

×
0d
−

n∑
j=1,j 6=i

Mij

(
(q×

jd
)ω̇jd)

×
+ ‖ωjd‖2q×jd

)
− li
( n∑

k=i

u×
k

)]
(−q×i )ξi

+

n∑
j=1,j 6=i

[
Mijq

×
id

(
ω̇×
jd
− ‖ωjd‖2I

)
q×
jd

]
ξj +

n∑
j=1,j 6=i

Mij

[
2q×

id
qjdω

>
jd

]
δωj

+li(q
×
i )

n∑
k=i

((δfk)Rkde31k + fkdδRkde31k) (C.8)

M00I3δv̇0 −
n∑

i=1

M0iq
×
id
δω̇i =

n∑
i=1

(
M0i

[
(ω̇×

id
− ‖ωid‖2I3)q×

id

]
ξi +M0i(2qidω

>
id)δωi

)
+∑

k∈I

(
(δfk)Rkde3 + fkdδRkde3

)
(C.9)

Mi0q
×
id
δv̇0 +MiiI3δω̇i −

n∑
j=1,j 6=i

Mij

[
q×
id
q×
jd
δω̇j

]
=

[
Miov̇

×
0d
−

n∑
j=1,j 6=i

Mij

(
(q×

jd
)ω̇jd)

×
+ ‖ωjd‖2q×jd

)
− li
( n∑

k=i

u×
k

)]
(−q×i )ξi

+

n∑
j=1,j 6=i

[
Mijq

×
id

(
ω̇×
jd
− ‖ωjd‖2I

)
q×
jd

]
ξj +

n∑
j=1,j 6=i

Mij

[
2q×

id
qjdω

>
jd

]
δωj

+li(q
×
i )

n∑
k=i

((δfk)Rkde31k + fkdδRkde31k) (C.10)

From (C.5) & (C.10), we have,





M00I3 −q×1dM01 −q×2dM02 . . . −q×ndM0n

M10q
×
1 M11I3 −M12q

×
1dq
×
2d . . . −M1nq

×
1dq
×
nd

M20q
×
2d −M21q

×
2dq
×
1d M22I3 . . . −M2nq

×
2dq
×
nd

...
...

...
. . .

...

Mn0q
×
nd −Mn1q

×
ndq
×
1d −Mn2q

×
ndq
×
2d . . . MnnI3




δv0

δω̇1

...
δω̇n




O a1 . . . an O b1 . . . bn e1 . . . enQ

O . . . O
O c11 . . . c1n O d11 . . . d1n f11 f1nQ

O . . . O
...

...
. . .

...
...

...
. . .

...
. . .

...
. . .

...
O cn1 . . . cnn O dn1 . . . dnn fnQnQ

O . . . O





δx
ξ1
...
ξn
δv
δω1

...
δωn
ηj1
...

ηjnQ

δΩj1
...

δΩjnQ



+Gδu, (C.11)

where
ai = M0i

[
(ω̇×id − ‖ωid‖

2I3)q×id (C.12)

bi = M0i(2qidω
>
id), i = {1, . . . , n} (C.13)

cij =

{[
Miov̇

×
0d −

∑n
j=1,j 6=iMij

(
(q×jd)ω̇jd)

×
+ ‖ωjd‖2q×jd

)
− li

(∑n
k=i u

×
k

)]
(−q×i ) i = j[

Mijq
×
id

(
ω̇×jd − ‖ωjd‖2I

)
q×jd
]

i 6= j
(C.14)

dij =

{
O i = j

Mij

[
2q×idqjdω

>
jd

]
i 6= j

(C.15)

ej = −fjdRjde×3 , j ∈ I (C.16)

fij =


[] if j /∈ I
−(liq

×
i )fjdRjde3

×, if j ∈ I, j ≥ i
O3,3 if j ∈ I, j < i

(C.17)

gj = Rjde3 (C.18)

hij =


[] if j /∈ I
(liq
×
i )Rjde3, if j ∈ I, j ≥ i

O3,1 if j ∈ I, j < i

(C.19)



Variation Linearized Dynamics

δx = [δx, ξ1, . . . , ξn, δv, δω1, . . . , δωn,

ηj1, . . . , ηjnQ
, δΩj1, . . . , δΩjnQ

]> (C.20)

δu = [fj1, fj2, . . . , fnQ,M
>
j1,M

>
j2, . . . ,MjnQ

]> (C.21)

δẋ = Aδx + Bδu (C.22)
where,

A =


03,3 03,3n I3,3 03,3n 03,3nQ 03,3nQ

03n,3 α 03,3 β 03,3nQ 03,3nQ

M−1F
03nQ,3 03nQ,3n 03nQ,3 03nQ,3n γ I3nQ,3nQ

03nQ,3 03nQ,3n 03nQ,3 03nQ,3n 03nQ,3nQ ν

 , (C.23)

α = blkdiag[q1dq
>
1dω
×
1d
, q2dq

>
2dω
×
2d
, . . . , qndq

>
ndω
×
nd

] (C.24)

β = blkdiag[
(
I3−q1dq>1d

)
,
(
I3−q2dq>2d

)
, . . . ,

(
I3−qndq

>
nd

)
] (C.25)

γ = blkdiag[−Ω×
j1d

, − Ω×
j2d

, . . . ,−Ω×
jnQd

] (C.26)

ν = blkdiag[J−1
1 ((J1Ω1d)×−Ω×

1d
J1), .., J−1

1 ((JnΩnd)×−Ω×
nd
Jn)] (C.27)

B =

 O3(n+1),4nQ

M−1G
O3nQ,4nQ[
O3nQ,nQ µ

]
 , µ = blkdiag[J−1

j1 , . . . , J
−1
jnQ

] (C.28)

and

M =


M00I3 −q×

1d
M01 . . . −q×

nd
M0n

−M10q
×
1d

−M11I3 . . . M1nq
×
1d
q×
nd

...
...

. . .
...

−Mn0q
×
nd

Mn1q
×
nd
q×
1d

. . . −MnnI3

 (C.29)

F =

[
O3,3 [a]i O3,3 [b]i [e]j O3nQ,3nQ

O3n,3 [c]i,j O3n,3 [d]i,j [f ]ij O3nQ,3nQ

]
(C.30)

G =

[[
[g]i

[h]i,j

]
O(3(n+1),3nQ)

]
(C.31)


