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Abstract— In this paper, we propose a variation-based ex-
tended Kalman filter (V-EKF) on the two-sphere manifold.
We consider the spherical pendulum dynamical system whose
nonlinear geometric dynamics evolve on the two-sphere. These
dynamics are linearized about the current state using a
variation-based linearization resulting in a time-varying linear
system with state constraints that describe the dynamics of the
variation states. The Kalman filter is applied on the resulting
variation states with the pendulum position as measurements
for measurement updates. The V-EKF also has a constraint up-
date where the estimated state and covariance are updated
to ensure they satisfy the constraints. Desirable properties
of V-EKF, such as preserving the geometric structure of the
estimated state are thus achieved. The proposed method is
illustrated through numerical simulations and also validated
through experiments.

I. INTRODUCTION

The set of all points in the Euclidean space R3, that lie on
the surface of the unit ball about the origin belong to the two-
sphere manifold, S2. It is a two-dimensional manifold that
is locally diffeomorphic to R2. Many mechanical systems
such as a spherical pendulum, double pendulum, quadrotor
with a cable-suspended load, evolve on either S2 or products
comprising of S2. Typically, systems that evolve on S2

are parametrized by azimuthal angles (spherical coordinates)
with respect to a local reference system. Prior estimation al-
gorithms on S2 use the local parameterizations and estimate
the azimuthal angles. However such estimators are not valid
globally and have singularities. Our work addresses this by
directly estimating the states on TS2, the tangent bundle of
S2, and is thus free of singularities.

In recent times, many robotic systems with configuration
spaces that include two-sphere manifolds are studied for
various applications. For instance, dynamics for multiple
quadrotors with payload suspended from cables, [12], [13],
[8], [2] or three-link walkers [1] are defined with cable/link
attitude represented using the two-sphere, S2. Due to the
coordinate-free nature of these dynamics, controllers that
exhibit almost global stability properties [12], [4] can be
designed. Most controllers assume complete and accurate
knowledge of the state and thus require the best state
estimate, like link attitude and angular velocity, to achieve
the desirable results.

Kalman filters for nonlinear systems such as extended
Kalman filter (EKF) and unscented Kalman filter (UKF) can
be used for estimation on the two-sphere S2. However, the
measurement update of these Kalman filters is performed
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Fig. 1: The Spherical Pendulum model evolves on S2 with
the attitude of the pendulum represented by a unit-vector
q ∈ S2. Angular velocity of the pendulum at a point q in S2

is in the tangent space TqS2 = {ω ∈ R3 | ω.q = 0}.
in the Euclidean space and thus, the estimated state is
not guaranteed to lie on S2. Thus, estimators that estimate
directly on the manifold are required. One such estimator, a
set-bounded estimator for the spherical pendulum that uses
a global, coordinate-free parametrization is developed in [6].
In the set-bounded estimator, the pendulum attitude is rep-
resented SO(3) with a symmetry axis, effectively reducing
the attitude to S2 and assumes bounded measurement noise.
Unlike, the set-bounded estimators our work provides global
formulation of an EKF for S2 estimation using variation
based methods, similar to estimation of states on SE(3) in
[5].

The goal of our work is to estimate the state of the
spherical pendulum Xk ∈ TS2 at time t = tk, given noisy
estimate of the pendulum state Xk−1 at time t = tk−1 and
measurements of the Cartesian position zk ∈ R3 of the
pendulum’s bob with respect to the suspension point. Our
approach is to formulate a variation-based extended Kalman
filter that (a) propagates the continuous-time dynamics on
TS2 using a variational-based integrator to construct the
a priori pendulum state estimate, (b) derives the geomet-
ric variation-based linearization of the nonlinear dynamics
and formulates the geometric variation xk ∈ R6 between
consecutive pendulum states Xk and Xk−1, (c) uses the
discrete measurements zk to obtain a posterior estimates of
the variation states xk and its covariance, (d) corrects the a
posterior variation state and covariance estimates to enforce
the state constraints, and finally (e) constructs the a posterior
pendulum state estimate using the variation states.

The main contributions of this work are enumerated below,

1) V-EKF is developed for the coordinate-free nonlinear



dynamic model of a spherical pendulum on S2 and
thus, is not subjected to the complexities of local
parameterization,

2) since the estimation is developed on S2, the structure
of the spherical pendulum states is preserved,

3) variation-based linearized dynamics of the spherical
pendulum are used during covariance update of the V-
EKF,

4) procedure to accurately calculate the variation between
two spherical pendulum states (q, ω) is shown,

5) proposed V-EKF is demonstrated using numerical sim-
ulations and experiemental results.

Rest of the paper is structured as follows. Spherical pen-
dulum dynamics, variations on its states and variation-based
linearized dynamics are given in Section II. Section II also
provides the discrete variational dynamics for the spherical
pendulum. Section III provides the notation used in the V-
EKF, followed by the variation based extended Kalman filter.
Section IV validates the proposed V-EKF through numerical
simulations and section V provides the experiment results.
Finally, Section VI provides the concluding remarks.

II. SPHERICAL PENDULUM

A typical Extended Kalman Filter (EKF) consists of two
steps time update and measurement update. In the time up-
date, nonlinear dynamics of the system are integrated to
propagate the state estimate through time, while linearized
dynamics are used to update the covariance of the estimated
state. In the measurement update, estimated state and its
covariance are corrected based on the sensor measurements.

In this section, we discuss the spherical pendulum dy-
namics and analyze variations on its states. We linearize the
spherical pendulum dynamics using these variations. Finally,
we present discrete variational dynamics for the spherical
pendulum, so that the structure of the configuration manifold
is preserved when integrated.

A. Spherical Pendulum Dynamics

Consider the spherical pendulum model presented in Fig-
ure 1. A spherical pendulum comprises of a mass attached
to a fixed point through a suspended cable. Mass of the
suspended cable is negligible compared to the attached mass
and thus, the cable is considered to be mass-less. The
spherical pendulum lies in 3D space with two degrees-of-
freedom, thus the configuration of the pendulum is in the
space of two-sphere S2.

We describe the coordinate-free dynamics for the spherical
pendulum with pendulum attitude represented by a unit
vector in the two-sphere S2 := {q ∈ R3 | q · q = 1}. The
tangent space of the two-sphere at q, given by TqS2 = {ω ∈
R3 | ω.q = 0} (see [10]), is a two-dimensional plane tangent
to the unit vector q. Let X represent the pendulum state i.e.,

X =

[
q
ω

]
∈ TS2. (1)

The equations of motion for spherical pendulum is given as,[
q̇
ω̇

]
=: Ẋ = f(X ) :=

[
ω × q

− gl (q × e3)

]
, (2)

where q is the unit vector representing the attitude of the
pendulum, ω is the angular velocity of the pendulum, m
is the mass of the pendulum mass, l is the length of the
pendulum, g is acceleration due to gravity and e3 is the third-
directional unit vector of the inertial frame.

Dynamics in (2) are linearized using variations and the
linearized dynamics are used in the Kalman filter in the later
sections. In the next section, we define the variations for q,
ω.

B. Variation on S2

For a given trajectory q(t) on S2, variation of the state q
is considered, such that the perturbed trajectory is also on
S2. This is achieved by rotating the vector q, so that the
unit-length of the vector q is preserved. Variation on S2 is
expressed in terms of a rotation matrix (represented as an
exponential map) in [9] as follows,

qε(t) = exp[εξ×]q(t), (3)
for a curve ξ(t) ∈ R3 satisfying ξ(t).q(t) = 0, ∀t. The cross-
map (·)× : R3 → so(3) is defined such that, u×v = u × v,
for any u, v ∈ R3. The corresponding infinitesimal variation
for S2 is given as,

δq(t) =
d

dε

∣∣∣∣
ε=0

exp[εξ×]q(t) = ξ×q(t). (4)

The infinitesimal variation could be roughly treated as a
linear approximation of the distance between two points
on S2. Infinitesimal variation of the angular velocity [9] is
denoted by δω(t) in R3 satisfying q(t) ·ω(t) = 0. For future
use, we define the variation state as,

x =

[
ξ
δω

]
∈ R6. (5)

The infinitesimal variation ξ in (3) is always orthogonal
to q. Taking the time-derivative of the constraint results in,

ξ · q ≡ 0 =⇒ ξ̇q + ξq̇ = 0. (6)
Moreover, the angular velocity ω in (1) is always orthogonal
to q. Taking the variation of the constraint results in,

q · ω ≡ 0 =⇒ (ξ×q) · ω + q · δω = 0. (7)
Thus any variation x of the spherical pendulum state X has
to satisfy the constraints (6) and (7).

Having defined the variations for the states, we now
consider variations on the dynamics. This would result in
linearization of the dynamics as shown in the next section.

C. Variation-based Linearized Dynamics

Taking variation of the spherical pendulum dynamics in
(2) about the current state X yields the following variation
dynamics (see [14]) ,

δq̇ = δω × q + ω × δq, (8)

δω̇ =
−g
l

(δq × e3). (9)
Substituting for δq = ξ×q from (4), we have the following
coordinate-free linearized dynamics,

ẋ =

[
qqTω× I3×3 − qqT
− gl e3

×q× O3×3

]

︸ ︷︷ ︸
,A

x (10)

where I3×3 and O3×3 are Identity and zero matrices and x
is as defined in (5). Constraints on the variations given in



(6),(7) can be rearranged into following matrix form.[
qT 01×3

−ωT q× qT

]

︸ ︷︷ ︸
,C

x =

[
0
0

]
. (11)

Remark: 1. Note that (10) and (11) constitute a con-
strained linear time-varying system. Furthermore, as noted
in [14, Lemma 1], the constraint space is time-invariant, i.e.,
Cx(0) = 0 =⇒ Cx(t) = 0,∀t ≥ 0. Note that, unlike in
[14], we obtained the variation-based linearization (8)-(9) by
taking variations about the current state X and not a desired
state.

D. Variational Integrators

Conventional numerical integrators for the nonlinear dy-
namics in (2), do not ensure that the unit length of the
vector q and the total energy are preserved numerically
[9]. In this section, we present the variational integrator
for spherical pendulum, to ensure that the dynamics evolve
on S2. Discrete variational dynamics with time-step h for
a spherical pendulum are given in [9] and are reproduced
below,

qk+1 =
(
hωk −

h2

2m
(qk ×mgle3)

)
× qk+

(
1−

∥∥∥∥hωk −
h2

2m
(qk ×mgle3)

∥∥∥∥
2 )1/2

qk,

(12)

ωk+1 = ωk −
h

2m
(qk ×mgle3)− h

2m
(qk+1 ×mgle3).

(13)
Let these equations be represented as,

Xk+1 =

∫

V I

f(Xk). (14)

E. Variations between two states on S2

In Section II-B, we defined variation on S2. Thus, varying
a pendulum state X1 ∈ TS2 would result in a new state
X2 ∈ TS2 and let x ∈ R6 be the variation between these
states. Furthermore, we can define operators to transform
between them as follows. Consider 	 : TS2 × TS2 → R6

and ⊕ : TS2 × R6 → TS2 defined by
X2 	X1 = x and X1 ⊕ x = X2. (15)

The mathematical formulae for the operators 	,⊕ are pre-
sented in Appendices A & B.

In the next section, we present the variation based ex-
tended Kalman filter (V-EKF) for spherical pendulum. Dis-
crete variational dynamics in (14) are used in the time update
to propagate the estimated state through time, while the Lin-
earized dynamics in (10) are used to update the covariance
of the estimated state.

III. VARIATION-BASED EXTENDED KALMAN FILTER

Given a linear dynamical system and a measurement
model, with known Gaussian noise, the Kalman filter gen-
erates an optimal estimate of the state and its covaraince.
Kalman filters typically consist of two steps: (i) A time up-
date, where the prior knowledge of the state along with the
system dynamics are used to estimate the state at a later

time, and (ii) A measurement update, during which the
estimate of the state and its covariance is updated based
on the measurements received. An EKF is used for state
estimation of nonlinear systems and measurement models
by linearizing the dynamics and measurements.

Similary, our proposed V-EKF uses the linearized dy-
namics and discrete variational dynamics presented in the
previous section to estimate the state. V-EKF calculates the
variation state between the pendulum states at time tk−1

and tk, obtained by using discrete variational dynamics.This
variation state is updated with the measurement at tk. How-
ever, the estimated variation is not guaranteed to satisfy
the constraint (11) and requires an additional constraint
update. The estimated variation state and its covariance is
projected onto the constraint surface. Finally, the variation
state estimate is used to obtain the state estimate at tk.
Further details are provided in the subsequent subsections.

Notation followed by the V-EKF in this work is presented
below.

A. Notation

• Let the estimates be represented by ·̂, i.e., X̂k represents
the pendulum state estimate at time tk and x̂k represents
the variation state estimate between the pendulum states
X̂k−1 and X̂k.

• Let X̂−
k be time update of the pendulum state, x̂−k be

time update of the variation state and P−
k be time update

of the covaraince of the variation state at time-step k.
• Let x̂mk and Pmk be the measurement updated variation

state and the corresponding covaraince.
• Let x̂+k and P+

k be the variation state and its covaraince
after the constraint update. Finally, let X̂+

k be the final
pendulum state update.

In the following section, equations used by the variation
based extended Kalman filter for state estimation are pre-
sented and the same is illustrated in the Figure 2.

B. Variation Based Extended Kalman Filter

1) Time Update: The equations of motions for spherical
pendulum given in (2) along with guassian process noise is
represented as,

Ẋ = f(X ) + V, (16)
where V is the process noise in the system. Since, the
dynamics evolve on S2, the process noise V /∈ R6 but
belongs to the tangent space of S2. Based on earlier result in
(10), the variation-based linearzation of the above dynamics
results in

ẋ :=

[
ξ̇
δω̇

]
= Ax+ v, (17)

and the process noise of the variation state is v ∈ R6 with
covariance Q = E[vvT ] ∈ R6×6. For practical applications,
Q can be considered a design parameter.

Let the mean of the initial state of the spherical pendulum
be X̂0 and let the initial covaraince of the variation state
be P0 ∈ R6×6. The current time estimate X̂−

k is obtained
by intergrating the dynamics in (16) using the variational



X 0, P0

Initialization X̂−k =

∫∫∫ tk

V.Itk−1

f(X̂ )

P−k =

∫∫∫ tk

tk−1

(AP + PAT + Q)dt

Time Update

x̂−k = X̂−k 	 X̂
+

k−1

Kk = P−k HT
k

(
HkP

−
k HT

k + R
)−1

Pm
k = (I −KkHk)P

−
k

x̂m
k = x̂−k + Kk(zk − h(X̂−k ))

Measurement Update

Γ = W−1
k CT

k (CkW
−
k CT

k )−1

Wk = (Pm
k )−1

x̂+
k = x̂m

k − Γ(Cx̂m
k )

P+
k = (I − ΓCk)P

m
k

Constraint Update

X̂+

k = X̂+

k−1⊕ x̂+
k

k→ k− 1

zk

X̂−k , P−k x̂−k , P
−
k x̂m

k , Pm
k

x̂+
k , P

+
k

X̂+

k , P
+
k

X̂+

k−1, P
+
k−1

Fig. 2: Variation based extended Kalman filter illustrating the time update, measurement update and the constraint update.

integrator in (12)-(13) with the previous state estimate X̂+
k−1

as initial condition. This is formulated as
X̂−
k =

∫

V I

f(X̂+
k−1). (18)

Next, the variation between the states X̂+
k−1 and X̂−

k is
calculated as explained in Section II-E, resulting in,

x̂−k = X̂−
k 	 X̂

+
k−1. (19)

Rest of the estimation is performed on the variation x̂−k ,
effectively transforming the estimation from TS2 to R6. Co-
variance of the variation state is updated using the continuous
covariance update given below (see [15, (3.235)]),

Ṗ = AP + PAT +Q, (20)
where, A is the linearized dynamics from (10). Integrating
this from tk−1 to tk results in the time update of the
covariance, P−

k .

2) Measurement Update: The measurement z ∈ Rp is a
nonlinear function of the state, as given below,

z = h(X ) + w, (21)
where w ∈ Rp is Gaussian measurement noise with covari-
ance R = E[wwT ]∈Rp×p. Similar to an EKF [15], the above
measurement model is linearized resulting in

z = Hx, (22)
where H ∈ Rp×6 is the measurement matrix (see Appendix-
C for more details.). The time updated variation state x̂−k and
covariance P−

k is fused with the measurement zk at time tk
to obtain x̂mk , P

m
k using the following measurement update:
x̂mk = x̂−k +Kk

(
z − h(x̂−k )

)
, (23)

Pmk = (I −KkHk)P−
k , (24)

where the Kalman gain Kk = P−
k H

T
k (HkP

−
k H

T
k +Rk)−1.

3) Constraint Update: The variation state and its covari-
ance x̂mk , P

m
k obtained from the measurement update are

not guaranteed to satisfy the constraint (11). We therefore
need to project the estimates onto the constraint surface. This
is achieved by projecting the estimates into the Null-space
of the constraint matrix C, as explained in [7], [11]. The
constraint update is thus given by,

x̂+k = x̂mk − Γ(Cx̂k), (25)

P+
k = (I − ΓCk)Pmk , (26)

where, Γ = W−1
k CTk (CkW

−
k C

T
k )−1 with Wk being a

positive definite symmetric weight matrix. We choose Wk =
(Pk)−1 to obtain the smallest projected covariance [7].

Finally, the variation state estimate x̂+k is used to calculate
the pendulum state estimate X+

k as explained in Appendix-B

i.e.,
X̂+
k = X̂+

k−1 ⊕ x̂
+
k . (27)

An overview of the variation based extended Kalman filter
(V-EKF) is illustrated in the Algorithm 1 and Figure 2.
Remark: 2. Note that the proposed V-EKF can also be
extended to the case of an actuated spherical pendulum. In
this case, the control input is used to propagate the state
through the system dynamics, i.e.,

X̂−
k =

∫
f(X̂+

k−1, uk−1), (28)

with the rest of the estimation as in Algorithm 1.
Remark: 3. Note that the V-EKF can also be used to estimate
states on other manifolds such as SO(3) and SE(3), and re-
quires computing the variations on the respective manifolds.

IV. NUMERICAL SIMULATIONS

In this section, we demonstrate the variation based ex-
tended Kalman filter, proposed in the previous section,
through numerical simulations. The measurement model is
given by the position measurements of the pendulum mass
with Gaussian noise. We implement the V-EKF to estimate
the un-measured states and also obtain better estimates of
the noisy measurements from sensors, while ensuring that
the estimated states belong to TS2.

For numerical simulations of the spherical pendulum sys-
tem, we use the following system parameters,

m = 1kg, l = 1m.
We choose the noise statistics as follows: The initial co-
varaince of the variation state is chosen as P0 = I6×6, the
measurement noise covariance is chosen as R = 1e−3I3×3,
and the process noise is Q = 1e−5I6×6. The mean of the
initial variation state is x̂0 = 06×1, while the initial state of
the pendulum is,

X̂0 = [1, 0, 0, 0, 0, 0]T .
Figure 3, illustrates the result of simulating the system

with the V-EKF for 100 random initial conditions with
the aforementioned measurement model and covariances. As
seen from the Figure, V-EKF estimates of the state are
close to the true state even with random initial states. More
importantly, even with almost maximum initial attitude error,
the estimates from the V-EKF still converge to the true
values. In these simulations, measurements are obtained by
running the dynamics simulation of the spherical pendu-
lum with initial state X̂0 and adding random process and
measurement noises with covariances Q and R, respectively.



0 0.5 1 1.5 2 2.5

-1

0

1

0 0.5 1 1.5 2 2.5

-1

0

1

0 0.5 1 1.5 2 2.5

-1

0

1

0 0.5 1 1.5 2 2.5

-2

0

2

4

0 0.5 1 1.5 2 2.5

-20

0

20

0 0.5 1 1.5 2 2.5

-20

0

20
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plied on the dynamics in (2) through Jacobian linearization)
and Angle-EKF (EKF applied on the dynamics represented
using spherical coordinates); (Top) Plots for the norm of the
load attitude estimate. (Bottom) Plot showing the norm of
the estimated angular velocity.

Random initial conditions are selected by generating random
variations with covariance P0 and transforming the initial
condition X̂0 through these variations (see Appendix-B).

Furthermore, the pendulum state estimated by the V-EKF
lies on S2 .i.e, the unit norm of the pendulum attitude is
preserved and is shown in the Figure 4. In the Figure, norm of
the pendulum attitude obtained through the V-EKF estimate
is compared to that of a standard EKF (where the dynamics
of the pendulum in (2) are linearized using Jacobians without
taking variations on S2 into consideration) and an angle-EKF
(the dynamics of the pendulum are presented in the spherical

coordinates). Angle-EKF satifies the unit-norm constriant,
since the state q is as a function sin and cos of the angles.
However, this representation results in singularities in the
system and can be observed from the ‖ω̂‖ plots in the Figure.
This results in very high values for the angular velocity norm
near the regions of singularities.

In order for the estimated variations to be valid, the
variation estimates should also satisfy the constraint in (11).
Figure 5 shows the constraint values during different stages
of the estimation, namely (i) time update, (ii) measure-
ment update and (iii) constraint update. As shown in the
Figure, constraint projection update ensures that the variation
estimate satisfies the constraint in (11). As seen from the
Figures 3, 4, 5, the variation based extended Kalman filter
is validated using numerical examples. In the next section,
V-EKF is validated through experiments.

V. EXPERIMENTS

In this section, we present experimental results for the V-
EKF developed in the previous sections. The physical setup
used in the experiments as well as the results are discussed
next.

A. Setup

The spherical pendulum model used for experiments con-
sists of a 3D-printed cube, used as the pendulum bob,
suspended from a fixed point through a string. Figure 6
shows the spherical pendulum used in the experiments. An
Optitrack motion capture system and reflective markers on
the pendulum bob and the cable suspension point are used to
measure the relative position of the pendulum bob. System
properties of the experimental setup are,

m = 0.0580 kg, l = 0.6665 m. (29)
An experiment is conducted by manually moving the pen-
dulum bob to an initial attitude and letting go to have the
spherical pendulum freely swing. The V-EKF is used to



Algorithm 1 Variation Based Extended Kalman Filter
System model and measurement model

Ẋ = f(X ) + V
ẋ = Ax+ v

zk = h(Xk) + wk

X (0) ∼ (X̄0,P0), x ∼ (0, P0), v ∼ (0, Q), w ∼ (0, R)
where f(X) and A are given in (16), (10).
Assumptions
{v(t) & w(t)} are white noise processes uncorrelated
with X (0) and with each other

Initialization
P+
0 = P0, X̂+

0 = X̄0

Prior (Time) update
1: A priori state update by integrating the dynamics using

discrete variational dynamics given in (12), (13).

X̂−
k =

∫ tk

V.I.tk−1

f(X̂+
k−1)

2: Variation between X̂+
k−1, X̂−

k is calculated (see
Appendix-A).

x̂−k = X̂−
k 	 X̂

+
k−1

3: Covaraince update of the variation is obtained through
integrating (20).

P−
k =

∫ tk

tk−1

AP + PAT +Q

Measurement update
1: Kalman gain is calculated using the a priori covaraince

and the measurement matrix Hk (see Appendix-C).

Kk = P−
k H

T
k

[
HkP

−
k H

T
k +Rk

]−1

2: Measurement update of the variation using the Kalman
gain and measurement z.

x̂mk = x̂−k +Kk

(
z − h(x̂−k )

)

3: Corresponding covaraince update of the variation.
Pmk = (I −KkHk)P−

k

Constraint update
1: Constraint update by projecting the variation estimate

into the constraint space,
x̂+k = x̂k − Γ(Cx̂mk )

2: Similarly, projecting the Covaraince to lie in the con-
straint space.

P+
k = (I − ΓCk)Pmk

Γ = W−1
k CTk (CkW

−
k C

T
k )−1

Wk = (Pk)−1

3: A posteriori state estimate is calcuated using the updated
variation (see Appendix-B).

X̂+
k = X̂+

k−1 ⊕ x̂
+
k

estimate the state of the spherical pendulum using only the
position measurements of the pendulum bob.

B. Results

To validate the proposed estimation through V-EKF, we
show the estimated states of the pendulum and compare
the results with the sensor measurements and standard EKF.
Following noise statistics for the process model and mea-
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Fig. 5: Constraint on various variation estimates: The two
columns illustrates the two constriants in (11). Constraint
equation is valid for prior update (first row), however the
measurement update (second row) does not satisfy the con-
straint equation. Finally, the constraint equation is satisfied
after the constraint projection update (third row).

surement model are considered,
Q = diag([1, 1, 1, 100, 100, 100])e−5,

R = diag([1, 1, 1])e−3.
Initial position of the pendulum-mass is measured for over
a period of 10 seconds and the measured data is used to
calculate the mean of the intial state and initial covariance of
the variation state. Calculated X̄0 and P0 for the experiments
are,

X̄0 = [0.0070, 0.4017,−0.9157, 0, 0, 0]T ,

P0 = diag([0.25, 5e−4, 1e−4, 3.49, 1e−2, 1e−3]).

Figure 7 shows the experiment results for state estimation
of the spherical pendulum. Comparison between the V-
EKF estimation, EKF estimation and the measurements is
illustrated in the Figure. As shown in the Figure, V-EKF and
EKF have similar estimates. However, advantage of V-EKF
can be seen in Figure 8, which shows the plots for norm of q
for various estimates. As seen from the Figure, norm of q is
preserved only in the case of V-EKF. The offset in the case
of the EKF estimate and the measurement can be attributed
to the inaccurate measurement of the cable length. Such
inaccuracies do not effect the structure of the state estimate
for the V-EKF. Also shown in the plots for ω are the values of
the angular velocity computed from finite differences of the
measurement. The finite difference estimates are very noisy
while the V-EKF estimates are smoother. Thus, as we have
seen, variation based extended Kalman filter can be used to



(a) (b)

Fig. 6: Experimental setup for spherical pendulum model, a
3D-printed cube with reflective markers and a motion capture
system to track center-of-mass position of the cube. (a) 3D-
Printed cube with reflective markers suspended by a string,
(b) Optitrack motion capture system

estimate the states on S2.

VI. CONCLUSIONS

A variation based Extended Kalman Filter (V-EKF) is
developed to estimate states of a spherical pendulum evolv-
ing on the two-sphere S2. Geometric variations on S2 are
used to obtain a variation-based linearization of the nonlinear
geometric dynamics of the pendulum. The resulting lin-
earized dynamics are time-varying with state constraints. The
proposed V-EKF consists of a time update, a measurement
update, and a constraint update, resulting in estimation of
the states directly on TS2. Our method uses a coordinate-
free formulation that is valid globally and is singularity-free.
Numerical and experimental results are presented to validate
the proposed V-EKF.

APPENDIX

A. Variation, xk, between states Xk−1 and Xk on S2

(xk = Xk 	Xk−1):

The spherical pendulum attitude and angular velocity
corresponding to the states Xk−1 and Xk are given below,

Xk−1 =

[
qk−1

ωk−1

]
, Xk =

[
qk
ωk

]
. (30)

In order to transform qk−1 to qk while preserving the
unit-length of q, we rotate qk−1 to qk as shown in (3),
where the rotation matrix is represented using exponential
map (exp[ξk

×]), with ‖ξk‖ equal to the amount of rotation
and unit-vector along ξk representing the axis of rotation.
The amount of rotation between qk−1 and qk is given by the
angle between the vectors qk−1 and qk,

θ = arccos
[
(qk−1 · qk)

]
. (31)

Since qk−1 and qk are unit-vectors, a vector perpendicular
to the two unit vectors qk−1, qk is given by,

~ξk = ± (qk−1 × qk)

‖(qk−1 × qk)‖
. (32)

Therefore, axis of rotation is found by finding the unit vector
along ~ξk resulting in the least amount of rotation i.e.,

q(k)+ = exp[(θ ~ξk)
×

]qk−1, (33)

q(k)− = exp[(−θ ~ξk)
×

]qk−1, (34)

ξk =





03×1 if θ = 0,

−θ ~ξk else if
‖q(k)+−qk−1‖2 > ‖q(k)−−qk−1‖2,

θ ~ξk else.

(35)

where, ξk is the infinitesimal variation between qk−1 and qk.
The infinitesimal variation in the angular velocity, (δωk), is

similarly calculated using (3) as shown below. Taking time-
derivative of (3) would result in,

q̇k = exp[(ξk)
×

](ξ̇k)
×
qk−1 + exp[(ξk)

×
]q̇k−1. (36)

Let R = exp[(ξk)
×

], therefore we have,
q̇k = R(ξ̇k)

×
qk−1 +Rq̇k−1, (37)

RT q̇k − q̇k−1 = −(qk−1)
×
ξ̇k, (38)

since a×b = a × b = −b × a = −b×a, for any a, b ∈ R3.
From (10), we have, ξ̇k =

(
qk−1q

T
k−1(ωk−1)

×
ξk + (I3×3 −

qk−1qk−1)T δωk

)
and substituting it in (38) results in,

RT q̇k − q̇k−1 = −(qk−1)
×
(
qk−1q

T
k−1(ωk−1)

×
ξk

+ (I3×3 − qk−1qk−1)T δωk

)
.

Note a×aaT = 03×3, for any a ∈ R3. Therefore, (39) is
simplified to,

RT q̇k − q̇k−1 = −(qk−1)
×
δωk (39)

(RT q̇k − q̇k−1)
×

(qk−1) = −
(

(qk−1 · qk−1)δωk

− (δωk · qk−1)qk−1

)

Simpliying the above equation would result in,
δωk = −(RT q̇k − q̇k−1)

×
(qk−1) + (δωk · qk−1)qk−1.

(40)
From (6), we have q · δωk = −(ξk

×q) · ω. This results in,
δωk = −(RT q̇k−q̇k−1)

×
(qk−1)−

(
ωk−1 · (ξk×qk−1)

)
qk−1.

(41)
Also note that q̇ = ω×q from (2). Finally, variation between

Xk−1 and Xk is given by (35) and (41), i.e., xk =

[
ξk
δωk

]
.

B. Calculating the state Xk by transforming a state Xk−1

through a variation xk (Xk = Xk−1 ⊕ xk):

Variation xk and state Xk−1 are decomposed as,

xk =

[
ξk
δωk

]
, Xk−1 =

[
qk−1

ωk−1

]
. (42)

The transformed q can be calculated similar to (3) as follows,
qk = exp[(ξk−1)

×
]qk−1, (43)

and the updated angular velocity is calculated using (39) as
shown below,

q̇k−1 = ωk−1 × qk−1, (44)

q̇k = R2(q̇k−1 − (qk−1)
×
δωk), (45)

ωk = qk × q̇k, (46)
where R2 = exp[(ξk)

×
]. Therefore, purturbed state is given

as,

Xk =

[
qk
ωk

]
. (47)

C. Linearization of measurement model to calculate mea-
surement matrix Hk:

Position measurements are considered during the measure-
ment update of the V-EKF. Measurement model is function
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Fig. 7: Comparison between the experiment results obtained through V-EKF estimation (solid line), EKF estimation (dashed
line) and the measurements(for q̂)/finite difference calculations(for ω̂) (dotted line). Top row shows load attitude estimate
and angular velocities are shown in bottom row.
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Fig. 8: Plots of the norm of load attitude obtained through (i).
measurments (dotted line), (ii). V-EKF (solid line) and (iii).
EKF (dashed line). Inaccurate measurement of the length of
the spherical pendulum cable resulted in the offset in the
norm for measurements and EKF. Also, note that the norm
of q is preserved only in V-EKF estimation.

of spherical pendulum state and is given as,
h(Xk) = lqk. (48)

This can be expressed in terms of variation as follows,
h(Xk) ≡ h(xk,Xk−1) = l exp[(ξk)

×
]qk−1. (49)

Measurement matrix Hk is obtained my linearizing the
above equation with respect to variation xk and evaluating
at a priori state estimate x̂−k as shown below,

Hk =
∂h

∂x

∣∣∣∣
x=x̂−

k

=
∂
(
l exp[(ξ)

×
q1]
)

∂

[
ξ
δω

]

∣∣∣∣∣∣∣∣
x=x̂−

k

(50)

=⇒ Hk = l

[
∂

(
exp[(ξ)×qk−1]

)

∂ξ 03×3

]∣∣∣∣
x=x̂−

k

(51)

Derivative of an exponential-map of a vector w.r.t. the

vector, i,e.,
∂

(
exp[(ξ)×qk−1]

)

∂ξ , is given in [3] or can be
calculated using a symbolic toolbox. Thus, the measurement
matrix, Hk, is as given in (51).
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