Prasanth Kotaru | Resum

4448 MacArthur Blvd, Oakland, CA

☐ (412) 726 3403 • ☑ prasanth.kotaru@berkeley.edu • ❷ vkotaru.github.io

Education

o Ph.D., Controls, in Mechanical Engineering, 2017-2022 University of California, Berkeley (UCB), CA. Advisor: Koushil Sreenath	Ť				
o Master of Science in Mechanical Engineering, 2015-2019 Carnegie Mellon University (CMU), Pittsburgh, PA. Advisor: Koushil Sreenath	γ				
o Bachelor of Technology in Mechanical Engineering,					
Relevant Courses: Nonlinear Controls, Predictive Control, Hybrid systems and Intelligent Controls, Engineering Opt mization, Linear Systems, Stochastic Systems: Estimation and Control, Computer Vision, Deep Reinforcement Learning Decision Making, and Control, † - expected					

Experience

- o Motion Planning Intern, Autopilot, Tesla. Sep '21-Dec'21
 - Worked on designing optimization models for autonomous vehicle turning, factoring comfort and safety.
 - Designed various cost-function heuristics for generating smooth motion planning trajectories and validated them on the vehicle.
- o Autonomy Intern, Monarch Tractor. Jun'21-Aug'21
 - Implemented and tested model predictive control (MPC) for autonomous navigation of electric tractor in the field.
 - Automated the process to convert custom CAN topics to ROS messages and publish the topics, which allowed for faster incremental development.
- - Developed custom quadrotor flight control firmware to test various control strategies such as model predictive control (MPC), control Lyapunov and control barrier functions (CLF-CBF) based QP on the hardware.
 - Developed control (geometric, adaptive), estimation (on smooth manifolds) and planning (direct-collocation) algorithms for multi-aerial payload transportation.
 - Built hardware to test multiple quadrotor collaborative aerial manipulation tasks, such as carrying a hose/tether.
 - UCB Graduate Division Block Grant for summers of 2018 and 2019.
- o Graduate Research Assistant, Hybrid Robotics Group, CMU. Aug'15-July'17
 - Modeled the dynamics for a load suspended from a quadrotor through flexible cable using coordinate-free representation.
 - Studied differential-flatness for such systems and developed trajectory tracking controllers.
- - Electronics lead for developing the field prototype of a pipe-defect detection sensor at high-temperatures.
 - Designed a portable signal acquisition system for the sensor and successfully tested it in the field at Reliance refinery, Jamnagar, India.
- o Graduate Student Instructor, Nonlinear Systems & Control [ME C237], UCB Spring 2019
- o Graduate Course Assistant, Mechanical Systems & Experimentation [ME 24-452], CMU Fall 2016

Skills

- o Controls & Planning, Estimation and Perception, Computer Vision, Reinforcement Learning
- o C/C++, Python, MATLAB, Scala
- o Experience with developing custom flight control firmware (for quadrotors).
- o ROS, Gazebo simulator, PyBullet, TensorFlow, OpenCV, Solidworks
- o Embedded systems such as Raspberry Pi, Navio2, Pixhawk, Arduino, etc.

Projects

o Trajectory planner for quadrotor with a cable-suspended payload

- Developed the trajectory planner by formulating a direction-collocation based optimization problem.
- Exploited the differential-flatness nature of the system to reduce the computation time.
- Implemented the planner on a Navio2 based quadrotor with custom firmware developed in C++.

\circ L_1 adaptation scheme for a quadrotor with geometric-attitude control

- Developed an L_1 adaptation scheme for a quadrotor with geometric-attitude control in the presence of disturbances and model uncertainties.
- Experimentally validated the control on a quadrotor with added weight in motion-capture.

o Symbolic computation toolbox for generating Lagrange-Hamiltonian dynamics

- Developed a Python symbolic computation toolbox for generating dynamics of robotic systems.
- The package generates dynamics for a system in SO(3) and S^2 manifolds using the principle of least action.

$_{\odot}$ Stair climbing using virtual model control for 2D bipedal locomotion

- Extended virtual model control techniques with addition models to achieve step climbing of biped robots.
- Tested the controller in MATLAB SimMechanics environment on 5-link 2D walking robot.

o Probabilistic control barrier functions for safety critical control

- Modified to CLF-CBF quadratic programming based controllers to an SOCP based controller to account for uncertainties in the barrier functions.
- Resulting controller observes conservative approach to ensure safety with increased uncertainty in the perception.

o Reinforcement Learning for Legged Robots balancing

- Explored reinforcement learning techniques to find robust control policies for a bipedal robot Cassie.
- Learned a robust balancing control policy for the robot in the Mujoco environment.

Publications

Preprint
[P1] Karan P. Jain*, Prasanth Kotaru *, Massimiliano de Sa, Mark W. Mueller [†] , and Koushil Sreenath [†] , "Tethered Power
Supply for Quadcopters: Architecture, Analysis and Experiments", [pdf]

Journals

- [J1] **Prasanth Kotaru**, Ryan Edmonson, and Koushil Sreenath, "Geometric L₁ Adaptive Attitude Control for a Quadrotor UAV", ASME, Journal of Dynamic Systems, Measurement, and Control, March 2020; 142(3): 031003. [doi], [pdf]
- [J2] Jun Zeng, **Prasanth Kotaru**, Mark W. Mueller, and Koushil Sreenath. "Differential Flatness Based Path Planning With Direct Collocation on Hybrid Modes for a Quadrotor With a Cable-Suspended Payload", IEEE Robotics and Automation Letters 5, no. 2 (2020): 3074-3081. [doi], [pdf]

Conferences

- [C1] **Prasanth Kotaru** and Koushil Sreenath. "Multiple Quadrotors Carrying a Flexible Hose: Dynamics, Differential Flatness and Control", IFAC World Congress, 2020, [pdf]
- [C2] Katherine L. Poggensee*, Albert H. Li*, Daniel Sotsaikich*, Bike Zhang, **Prasanth Kotaru**, Mark Mueller, and Koushil Sreenath. "Ball Juggling on the Bipedal Robot Cassie", European Control Conference (ECC), 2020, [pdf]
- [C3] Prasanth Kotaru and Koushil Sreenath. "Variation Based Extended Kalman Filter on S²", In 2019 18th European Control Conference (ECC), pp. 875-882. IEEE, 2019, [pdf]
- [C4] Jun Zeng, **Prasanth Kotaru**, and Koushil Sreenath. "Geometric control and differential flatness of a quadrotor UAV with load suspended from a pulley", In 2019 American Control Conference (ACC), pp. 2420-2427. IEEE, 2019, [pdf]
- [C5] **Prasanth Kotaru**, Guofan Wu, and Koushil Sreenath. "Differential-flatness and control of quadrotor (s) with a payload suspended through flexible cable (s)", In 2018 Indian Control Conference (ICC), pp. 352-357. IEEE, 2018, [pdf]
- [C6] **Prasanth Kotaru**, Guofan Wu, and Koushil Sreenath. "Dynamics and control of a quadrotor with a payload suspended through an elastic cable", In 2017 American Control Conference (ACC), pp. 3906-3913. IEEE, 2017, [pdf]

Reviewer	 	

 $ICRA\ (2022,\ 2021,\ 2020),\ IROS(2022,\ 2020),\ RAL(2022,\ 2021),\ ECC(2021),\ ACC(2021),\ CDC(2020),\ ICC(2019),\ ACC(2021),\ ACC(2021$